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This paper deals with a novel formulation of continuous-time model-predictive control for nonlinear

systems. A nonlinear-mapping approximation, employing a PWL approximation, is also an integral part

of the control scheme, and thus removes the need for output-function invertibility. The analytical

formulation of the control law makes it possible to use the method in practice, especially in the

chemical industry. An illustrative experiment is conducted to compare the proposed approach with the

method of nonlinear H1 control of a pH-neutralization process.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Linear-model predictive control (LMPC) is a well-known
and well-established industry standard. The generic term
LMPC refers to a class of control algorithms in which a linear
dynamic process model is used to predict and optimize process
performance. Having its roots in the 1970s, LMPC is nowadays
commercially available primarily for controlling constrained
multivariable processes (Henson, 1998). However, many pro-
cesses are sufficiently nonlinear to render the successful applica-
tion of LMPC impossible. There are two main cases where a
nonlinear type of control has to be considered: a moderately
nonlinear process with large operating regimes (e.g., multi-grade
polymer reactors) and a highly nonlinear process that operates
near a fixed operating point (high-purity distillation columns).
The need for high-quality control of such processes led to the
development of the nonlinear-model predictive control (NMPC)
methods. In general, NMPC (and also LMPC) is an optimization-
based control strategy where a sequence of control moves is
computed to minimize an objective function that includes
predicted future values of the controlled outputs. The predictions
in each computation step are obtained from a nonlinear
process model. The majority of methods rely on the so-called
nonlinear receding horizon principle (Mayne and Michalska, 1990;
Henson, 1998), where feedback is included by implementing

only the manipulated inputs computed for the present time
step, then moving the prediction horizon forward one step and
repeating the procedure with the new measurements. This
strategy yields an open-loop optimal controller. There is a wide
variety of existing NMPC methods, for example in Maner et al.
(1996), Badgwell (1997) and Norquay et al. (1999) in the discrete-
time framework, and in Demircio

˘
glu and Gawthrop (1991),

Chen et al. (2003) and Magni and Scattolini (2004) in the
continuous-time framework. For the state of the art of NMPC
methods the reader is referred to the papers by Morari and Lee
(1999) and Henson (1998). Issues like the stability and optimality
of the NMPC methods were discussed in detail by Mayne et al.
(2000).

NMPC requires the availability of a suitable nonlinear dynamic
model of the process, and the accuracy of the model is of
paramount importance. There are two general classes of nonlinear
models used: fundamental models, based on transient mass,
energy, and momentum balances, and empirical models, such as
Hammerstein, Wiener, Volterra, and fuzzy models, which are
derived on the basis of empirical data from the process. The
majority of NMPC methods are derived in discrete time, and
therefore need discrete-time models. On the other hand, the
majority of models are given in continuous form and need to be
discretized. The drawbacks of discretizing nonlinear continuous-
time models were discussed by Pearson (2003); and they include
structural changes, the dependence of the stability on the model’s
parameters and the initial states, and the inaccurate system
intersample behavior (Magni and Scattolini, 2004). Because of this
our proposed method is based on a continuous-time model of a
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process, and the model can be obtained either directly from a
first-principle nonlinear process model or by identification.

The proposed approach in this paper tackles the control of
nonlinear processes using continuous-time nonlinear model-
based predictive control. The advantage of the proposed approach
is in the continuous-time framework which is used here. This
means that the sampling time, when applying the algorithm on
digital hardware and the digital redesign is made, can be selected
after the analogue control system is designed and, thus the
continuous-time closed-loop bandwidth is known. The approach
in continuous-time enables also a multi-sampling-rate digital
implementation.

Special attention is given to the processes that can be
efficiently modelled using a Wiener-type model. The linear
dynamics are derived from the first-principle nonlinear model;
and the nonlinear output function is calculated from the steady-
state equations and approximated by piecewise-linear (PWL)
functions. The model-output prediction is calculated using a
Taylor-series expansion of the Wiener model. The Wiener-PWL
structure makes it possible to form the prediction in an exact
analytical form consisting of a constant linear, and a variable
nonlinear, part. The former is a constant matrix that can be
calculated off-line, and the latter is a scalar product representing
the gradient of the PWL-approximation of the nonlinearity in the
Wiener model. The receding-horizon strategy was combined with
a cost function that minimizes the difference between the future-
output-prediction error and the model-prediction error. Conse-
quently, this brings the following benefits to the control-law
calculation:

� The law is derived in a closed analytical form, which resolves
the issue of nonlinear optimization and achieving the global
optimum in each calculation step.
� The reduction of the calculation of the control signal to a scalar

product and an inverse of a scalar (everything else can
be calculated offline) brings a significant reduction in the
computational complexity. This makes it possible to consider
the proposed method for practical applications.
� The nonlinearity is inherently included in the law; compared

to the method in Norquay et al. (1999); this removes the need
to invert the NL approximation.

The outline of the paper is as follows. In Section 2 the PWL
functions are introduced and the model-output prediction is
formulated in the continuous-time domain. In Section 3
the nonlinear predictive control law is derived, and some
stability issues are also discussed. Section 4 presents the
pH-neutralization process and gives a comparison of the closed-
loop-control results for the proposed approach and a nonlinear
H1 approach. Section 5 concludes the paper with some directions
for future work.

2. Problem statement

Let us assume a nonlinear continuous-time system

_xpðtÞ ¼ f ðxpðtÞ;uðtÞÞ;

ypðtÞ ¼ gðxpðtÞÞ;

ypð0Þ ¼ yp0; ypðTÞ ¼ ypT ; ð1Þ

where f : Rn-Rn and g : Rn-R are smooth functions, xpARn is a
vector of n state variables, uAR is a process input and ypAR is
a process output. An optimal control can in general be seen as

the solution of

min
uAO

Jðxp; yp; tÞ ¼min
uAO

Z T

0
Fðxp; yp; tÞdt; ð2Þ

where FARþ is a cost function that satisfies the optimality
criteria, and O is the set of admissible control signals. In other
words, we have to design a controller that asymptotically
stabilizes a closed-loop system in such a way that the process
output, ypðtÞ, optimally follows the prescribed reference trajec-
tory, yrðtÞ, according to the given performance index J. However,
dealing with nonlinear continuous-time systems, the problem
setup in (2) leads to solving the Hamilton–Jacobi–Bellman partial
differential equations (Bertsekas, 1995). The solution of the HJB
PDE system is usually obtained numerically (Chen et al., 2003),
which is computationally too expensive to be considered for
practical control applications. As an alternative, in this paper we
avoid solving the system of PDE by using the moving-horizon
control concept (Mayne and Michalska, 1990; Clarke et al., 1987;
Chen et al., 2003). The idea is to calculate the optimal control
sequence in each time instant by minimizing the given perfor-
mance index, which involves open-loop prediction of the model
output and the predicted reference signal. The initial conditions
are the reference, the model output and the process measured
output at the given time instant t, and the closed-form analytical
solution is open-loop optimal. After applying the calculated input
signal uðtÞ, the time-frame is moved to the next time instant.

2.1. Dealing with a nonlinearity in a system by using the Wiener

model and a PWL approximation

The system’s nonlinearity presents an additional difficulty in
terms of system modelling and control. This problem can be
successfully solved by using a Wiener-type system that has a
special structure that facilitates its application to model-based
predictive control. The Wiener system has the structure of a
dynamic linear block followed by a static nonlinearity

_xðtÞ ¼ AxðtÞþBuðtÞ;

vðtÞ ¼ CxðtÞ;

yðtÞ ¼ hðvðtÞÞ; ð3Þ

where AARn
�Rn, BARn, and CARn are the state-space matrices,

h : R-R denotes the static nonlinear mapping and yAR is the
process-model output. The variable vðtÞAR represents the
intermediate variable that does not necessarily have a clear
physical meaning. Notice also that the functions h from (3) and g

from (1) are not necessarily equal because, in general, the static
nonlinearity in the model also covers the effects of the
nonlinearity in the states of the process. Different approaches to
Wiener-model identification are found in the literature. The most
frequently used is the nonlinear–linear (N–L) approach, which is
the most comprehensible and ensures an accurate description of
the static nonlinearity (Gerkšič et al., 2000). This approach
requires steady-state data. The excitation signal has to be
designed to obtain the information about the steady-state
behavior of the system. The steady-state curve of the observed
system is obtained from data pairs of the input variable u and the
corresponding output variable y during steady-state, ðusi; ysiÞ. The
data set of steady-state points is a non-equidistant set of data and
it is spread around the nominal static curve. This set of steady-
state points is now modelled using PWL approach.

Using the PWL approximation, the process-model output is
defined as

yðtÞ ¼ ĥðvðtÞÞ ¼YTLðvðtÞÞ; ð4Þ
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where YT ARsþ1 and LARsþ1. Using this, any nonlinear
function h can be uniquely represented by the segmentation
of its input domain (Julián, 1999). Let us consider the segmenta-
tion into s segments by the boundary parameters ai, with
a0ra1r � � �ras�1. The elements of the basis functions can be
expressed as

LðvÞ ¼

1
1

2
ðv�a0þjv�a0jÞ

^
1

2
ðv�as�1þjv�as�1jÞ

2
6666664

3
7777775

ð5Þ

and the vector of the parameters is defined as

YT
¼ ½y0; y1; . . . ; ys�: ð6Þ

The locations of the boundaries are determined according to the
data distribution, usually by clustering algorithms (Pal and
Bezdek, 1995), and the vector of the parameters can be calculated
using common least-square algorithms. By calculating the
boundaries and the vector of the parameters the static nonlinear
block is defined. Secondly, the linear dynamic block has to be
defined. The linear block can be defined, as it has been realized in
our case, directly from the mathematical model or by identifica-
tion from the obtained data. The mathematical model of the pH
process has the structure of Wiener type. Therefore, the linear
part of the model, can been derived directly from the nonlinear
differential equations by linearization around the chosen operat-
ing point. This procedure is in more detail given in Section 4. The
identification approach requires the data of the input signal u and
the output signal v. Since the static model was obtained in the
steady state and the gain of linear model block is assumed to be
unity, the static mapping from v to y (marked with h in (3)) is
equivalent to the static mapping from us to ys that is described by
the PWL model. To calculate the intermediate variable v from y

the inverse static nonlinearity is required. The output variable y is
mapped by the inverse static nonlinearity to obtain the estimated
intermediate variables ~v. The linear model block is then formed as
the relation between the input variable u and the intermediate
variable v. The parameters of this block are estimated using the
identification algorithm on the data pairs ðu; ~vÞ.

2.2. Continuous-time prediction of the model output

In general the objective of a model-predictive control law is to
drive the predicted future output of a system as close as possible
to the future reference, subject to the input constraints. In the
continuous-time framework this implies that the predictions of
the reference and the process output must be either known or
estimated. Let us define the reference model by the triple in state-
space as Ar , Br and Cr , and denote the reference signal wðtÞ. In the
moving time frame the model-output prediction at time t can be
approximated by a truncated Taylor series expansion

yðtþtjtÞ ¼GT
ðtÞYðtÞ; ð7Þ

where the vectors GARnyþ1 and YARny þ1 are given by

GðtÞ ¼ 1 t � � � t
i

i!
� � �

tny

ny!

� �T

; ð8Þ

YðtÞ ¼ ½yðtÞ y½1�ðtÞ . . . y½i�ðtÞ . . . y½ny�ðtÞ�T ; ð9Þ

where ny is the output order, and y½i�ðtÞ stands for the ith
derivative of yðtÞ with respect to t. Analogously, the reference-
model output prediction can be defined as

yrðtþtjtÞ ¼GT
ðtÞ � r �wðtÞ; ð10Þ

where the vector of the Markov parameters rARnyþ1 is defined as

r¼ ½0 CrBr CrArBr � � � CrA
ny�1
r Br�

T : ð11Þ

Let us investigate the model-output prediction (7) in the PWL
approximation case. The ith derivative of yðtÞ is defined as

y½i�ðtÞ ¼YT dLðvÞ
dv

CAixðtÞþYT dLðvÞ
dv
½CAi�1B . . . CB�UðtÞ; ð12Þ

where UðtÞ stands for

UðtÞ ¼ ½uðtÞ u½1�ðtÞ . . .u½i�ðtÞ�T ð13Þ

and where

dLðvÞ
dv
¼

0
1

2
ð1þsignðv�a0ÞÞ

^
1

2
ð1þsignðv�as�1ÞÞ

2
6666664

3
7777775
: ð14Þ

Because all of the higher derivatives of the PWL mapping with
respect to v are equal to 0 ðd2LðvÞ=dv2

¼ � � � ¼ dnLðvÞ=dvn
¼ 0Þ, all

of the higher powers of _vðtÞ are cancelled as well. Let us define the
control order as follows.

Definition 1. The control order in the continuous-time predictive
control is said to be nu if the following is valid: u½nu �ðtþtÞa0,
8tA ½0; T� and u½i�ðtþtÞ ¼ 0, 8i4nu; tA ½0; T� where u½nu�ðtþtÞ
stands for nu th derivative of uðtþtÞ with respect to t. The
control order defines the allowable set, U , of the optimal control
input in the receding horizon frame, and hence imposes the
constraints on uðtþtÞ.

Remark 1. In this paper the output order ny and the control order
nu are two design parameters. However, in some papers
limitations in the choice of ny are used (Chen et al., 2003). If the
relative order of a process is denoted r, ny should be at least of the
same order as nuþr if the nu th derivative of the control signal is
to appear in the prediction, i.e., nyZnuþr. This is due to the fact
that nu defines the highest derivative of the control signal that is
assumed to drive the process in the moving-frame horizon, where
the minimization of the given cost function takes place.

The control vector UðtÞ of the nuth order is then defined as

UðtÞ ¼ ½uðtÞ u½1�ðtÞ . . .u½nu�ðtÞ�T : ð15Þ

Combining Eqs. (7)–(9) with (12), the prediction of the model
output yðtþtjtÞ at time t is given by

yðtþtjtÞ ¼GT
½PyðtÞþqðvÞKqxðtÞþqðvÞKhUðtÞ�; ð16Þ

where PARny þ1, KqARny þ1
�Rn, and KhARny þ1

�Rnuþ1 are
defined as

P¼ ½1 0 . . . 0�T ; ð17Þ

Kq ¼ ½0 ðCAÞT ðCA2
Þ
T . . . ðCAny Þ

T
�T ð18Þ

and

Kh ¼

0 � � � � � � 0

CB 0 � � � 0

CAB CB � � � ^

^ ^ & ^

CAny�1B CAny�2B � � � CAny�1�nu B

2
6666664

3
7777775
: ð19Þ

The matrices Kq and Kh can be calculated offline as they only
depend on the linear-model dynamics. Scalar function qðvÞAR

represents the gradient of the static output mapping, and is
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calculated as

qðvÞ ¼YT dLðvÞ
dv

: ð20Þ

3. Nonlinear Wiener-type model-predictive control

The performance index adopted in this paper is given by

V ¼

Z T

0
JyrðtþtÞ�ypðtþtjtÞJ2 dt: ð21Þ

This means that in each time instant t the predictions of the
reference response yrðtþtÞ and the process output ypðtþtÞ are
calculated for the prediction horizon T. The index is similar to
the one in Chen et al. (2003); the difference is that here we use the
prediction of the measured process output. This is justified for
practical applications where it is necessary for the measured
output to follow the reference-model output. The problem is that
we cannot assess the future process output from the measure-
ments. Rather, we will estimate its future behavior from the
available signals in the time instant t,

ypðtþtjtÞ ¼ ypðtÞ�yðtÞþyðtþtjtÞ; ð22Þ

following the assumption that the model and the process
increments are equal when driven by the same input signal uðkÞ

(cf. the assumptions of predictive functional control in Škrjanc
and Matko, 2001). Furthermore, we can inherently force the
process output to follow the reference dynamics. This is done by
assuming that the future control error is given by

eðtþtÞ ¼GT rðwðtÞ�ypðtÞÞ; ð23Þ

implying that the output error should decay exponentially at the
rate given by the product GT r. With this change the proposed
control strategy is based on a minimization of the difference
between the future control error and the difference between the
predicted model output at the time horizon tA ½0; T� and the
current model output:

eðt; tÞ ¼ eðtþtÞ�ðyðtþtjtÞ�yðtÞÞ: ð24Þ

The control law will be obtained by minimizing the cost function

V ¼

Z T

0
eðt; tÞTeðt; tÞdt: ð25Þ

Given the prediction of the process-model output in (16), the cost
function (25) is

VðU; v; tÞ ¼

Z T

0
ðrw�ryp�qKhU�qKqxÞTGGT

ðrw�ryp�qKhU�qKqxÞdt:

ð26Þ

Notice that, taking into account the calculation in (16), the
product GT PyðtÞ is equal to yðtÞ, and hence cancels the last term of
(24). The minimization of the cost function VðU; v; tÞ according to
the control variable U ð@V=@U ¼ 0Þ results in the continuous-time
model-predictive control law. The variables q, w, yp, and x are only
evaluated at the beginning of the time frame; therefore, the only
variable that depends on t is G. Hence, we can define the matrix
GARnyþ1

�Rnyþ1 as

G ¼
Z T

0
GGT dt: ð27Þ

Given that the general term of the symmetric matrix GGT is
Ti�1þ j�1=ðði�1Þ!ðj�1Þ!Þ, Eq. (27) can be rewritten as

G ¼

gð1;1Þ � � � gð1;ny þ1Þ

^ & ^

gðnyþ1;1Þ � � � gðny þ1;nyþ1Þ

2
664

3
775; ð28Þ

where

gði;jÞ ¼
1

ðiþ j�1Þði�1Þ!ðj�1Þ!
Tiþ j�1 ð29Þ

for every i; j¼ 1; . . . ;nyþ1. The minimization of the cost function
VðU; v; tÞ is given as

@V

@U
¼�2qðvÞKT

hG½rðw�ypÞ�qðvÞKhU�qðvÞKqx� ¼ 0 ð30Þ

and the control vector becomes

U ¼ qðvÞ�1
ðKT

hGKhÞ
�1KT

hG½rðw�ypÞ�qðvÞKqx�: ð31Þ

However, when we apply the calculated control signal we only
need the first element of the control vector. Let us now define the
first row of the matrix ðKT

hGKhÞ
�1KT

hGARnuþ1
�Rny þ1 as k. The

control law of the nonlinear Wiener-type model-predictive
control is now given by

uðtÞ ¼
1

qðvÞ
k½rðw�ypÞ�qðvÞKqx�: ð32Þ

What makes this control strategy suitable for practical applica-
tions is that the computational load is only on the online
calculation of the scalar product YT dLðvÞ=dv, whereas k, r and
Kq can be calculated off-line.

3.1. Existence of solution

Investigating the term eðt; tÞ in the cost function (25), it is clear
that the critical point in the optimization is the difference
between the process increment and the model increment, i.e.,
between eðtþtÞ and yðtþtjtÞ�yðtÞ in (24). Theoretically, it is
possible that both terms go to infinity, the difference stays close
to zero, so that the minimum is achieved, and the solution for u

does not change. This is why we also have to define the set of
admissible output signals corresponding to the given set of
admissible controls. However, in practical cases it is not probable
that both the process and the model would go to infinity while
driven by the same signal uAO.

Solving (31) gives us the optimal vector of the input signal and
its derivatives with respect to the open-loop cost function. The
key part of the equation is the inverse ðKT

hGKhÞ
�1. To get a unique

solution of the optimization problem, the inverse must exist.
However, we cannot ensure the existence of the inverse for all
possible choices of the design parameters ny and nu. Furthermore,
the products CAzB, where z depends on ny and nu, can also be
equal to zero, depending on the relative order of the process. The
existence of the solution of (31) is stated by the following
theorem.

Theorem 1. The optimal analytical solution (32) of the CWMPC

control law with stable linear part exists for any non-zero prediction

horizon T if, and only if, the difference between the output and the

input prediction order is greater than or equal to the relative order of

the linear part of process model, i.e., ny�nuZr.

Proof. In the analytical solution given by (32) the main problem
is inversion of the term KT

hGKh which is a ðnuþ1Þ- by-ðnuþ1Þ,
where matrix Kh consists of elements of the form CAzB where
z¼ 0; . . . ;ny�nu�1. The relative order r of a linear part of process
model affects the products CAzB such that they are zero for
zor�1. The matrix KT

hGKh is by definition invertible if, and only
if, it has a full rank, i.e., nuþ1 linearly independent columns.

Considering the case when ny�nuor. The last element of the

ðnuþ1Þ th column in matrix Kh, defined as CAr�1B is equal zero.

The columns in the matrix Kh have increasing exponent z. This

means that also all the previous elements of the last column in

matrix Kh equal zero, and the matrix Kh has at least one zero

S. Oblak, I. Škrjanc / Chemical Engineering Science 65 (2010) 1720–1728 1723
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column. Since G is symmetrical, the product KT
hGKh is singular

and the solution to (31) does not exist. &

4. Simulation example

The proposed method was tested on a chemical process with
marked nonlinearity. A mathematical model of a pH neutraliza-
tion process was adopted from Galán et al. (2000). The example
consists of a neutralization reaction between a strong acid (HA)
and a strong base (BOH) in the presence of a buffer agent (BX). The
neutralization takes place in a continuous stirred tank reactor
(CSTR) with a constant volume V. It is a well-known fact that the
pH processes are extremely difficult to deal with due to their
highly nonlinear behavior with respect to different titration
curves.

Fig. 1 shows a scheme of the continuous pH neutralization
process. An acidic solution with a time-varying volumetric flow
qAðtÞ of a composition x1iðtÞ is neutralized using an alkaline
solution with volumetric flow qBðtÞ of known composition
consisting base x2i and buffer agent x3i. Due to the high reaction
rates of the acid–base neutralization, chemical equilibrium
conditions are instantaneously achieved. Moreover, under the
assumption that the acid, base and buffer are strong enough, total
dissociation of the three compounds takes place. The process-
dynamics model can be obtained by considering the
electroneutrality condition (which is always preserved) and
through mass balances of equivalent chemical species (known
as chemical invariants). For this specific case, the dynamic
behavior of the process can be described considering the state
variables

x1 ¼ ½A
��;

x2 ¼ ½B
þ �;

x3 ¼ ½X
��: ð33Þ

Therefore, the mathematical model of the process can be written
in the following way:

_x1 ¼
1

y
� ðx1i�x1Þ�

1

V
� x1 � u;

_x2 ¼�
1

y
� x2þ

1

V
� ðx2i�x2Þu;

_x3 ¼�
1

y
� x3þ

1

V
� ðx3i�x3Þu; ð34Þ

gðx;xÞ ¼ xþx2þx3�x1�
Kw

x
�

x3

1þ
Kxx
Kw

¼ 0; ð35Þ

where x¼ 10�pH , y¼ V=qA, and u¼ qA=qB. Kw and Kx are the
dissociation constants of the buffer and water, respectively.
The parameters of the system represented by (34)–(35) are
x2i ¼ 0:0020 mol NaOH/L, x3i ¼ 0:0025 mol NaHCO3=L, Kx ¼

10�7 mol=L, Kw ¼ 10�14 mol2=L2 and V ¼ 2:5 L. Eq. (35) takes the
standard form of the widely used implicit expression that
connects pH with the states of the process, and it can also be
rewritten to a third-order polynomial form:

gðx; xÞ ¼ x3
þðKw=Kxþx2þx3�x1Þx

2
þðx2�x1þKxÞx�K2

w=Kx ¼ 0:

ð36Þ

Before proceeding with the controller design, some important
aspects, related to the dynamic behavior of the neutralization
reactor, must be pointed out to exploit its particular structure.
When mathematical models based on first principles are
employed for the design of controllers, the variables involved
have a clear physical meaning and their ranges are at least
partially known. For the neutralization reactor, due to the
instantaneous character of the acid-base reactions, where
equilibrium conditions can be justified, it seems that the only
dynamics involved is associated with the mixing phenomena. This
implies that the concentrations of different chemical species that
take part in the reaction vary from zero to a limit value. Therefore,
by defining the admissible-input set, the admissible-output set is
also defined (cf. Fig. 2).

Remark 2. The dynamics of the neutralization reactor resides in a
bounded and closed set, where xp;jA ½0; x

þ

p;j� is the concentration
invariant set.

Remark 3. Due to the invariance of the concentration set, the
output set is also a bounded and a closed set, where ypA ½y�p ; y

þ
p �.

The Wiener model is derived directly from the first-principle
model. The approach is particularly appealing for the control of
chemical processes because first principles give a straightforward
way of obtaining nonlinear continuous-time models. Considering
the system in (3), a model in the Wiener form can be obtained by
linearization of the functions f and g around a given point,
normalizing the model’s steady-state gain (the Wiener model
should have a steady-state gain equal to 1), and calculating the
steady-state solutions of the output function g to get a nonlinear
output mapping.

The linear approximation for the nonlinear system (34) and
(35) is given by

A¼

�
1

y
ð1þusÞ 0 0

0 �
1

y
ð1þusÞ 0

0 0 �
1

y
ð1þusÞ

2
6666664

3
7777775
;

1,A iq x

A Bq q

Bq

pH2 3,i ix x

V

Fig. 1. pH-neutralization process.

u

u

py

py

,3px

,1px,2px

pY

Fig. 2. Invariant species concentration set for the neutralization reactor.
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B¼

�
1

y
x1;s

1

y
ðx2i�x2;sÞ

1

y
ðx3i�x3;sÞ

2
6666664

3
7777775
; C ¼

@Z
@x1

@Z
@x2

@Z
@x3

� �
; ð37Þ

where

@Z
@xk
¼

@hðxÞ=@k

xlnð10Þ@hðxÞ=@x
; k¼ 1;2;3: ð38Þ

From the polynomial pH equation (35) the following terms are
easily calculated:

@hðxÞ

@x
¼ 3Kxx

2
þ2½Kwþðx3þx2�x1ÞKx�xþðx2�x1�KxÞKw;

@hðxÞ

@x1
¼�Kxx

2
�Kwx;

@hðxÞ

@x2
¼�Kxx

2
þKwx;

@hðxÞ

@x3
¼ Kxx

2: ð39Þ

The nonlinear functionality for the input–output map is given by

xk;s ¼
1

1þus
xk;i; k¼ 1;2;3; ð40Þ

xþx2;sþx3;s�x1;s�
Kw

x
�

x3;s

1þ
Kxx
Kw

¼ 0; ð41Þ

where us and xk;s represent the input and the states in the
linearization point. The process input was assumed to be bounded
by the interval 0ruðtÞr1; therefore, we used 200 equidistant
steady-state points from the intermediate-variable range vA ½0;1�
for the input set. A PWL approximation of the static output curve
was then obtained by optimizing the PWL parameters using the
steady-state points.

One should also note the diagonal structure of the matrix A. In
Galán et al. (2000), it was shown that the dynamics can be
successfully approximated by a first-order model. In terms of a
system-transfer function it would mean that two zeros and two
poles lie in the same position and can be cancelled. Therefore,
linearization around the steady-state point us ¼ 0:3692 ðpH¼ 7Þ
gave the following values:

A¼�0:5477; B¼ 1; C ¼ 0:5477: ð42Þ

For the approximation we assumed eight PWL simplices. The
positions of the simplex border points ai; i¼ 1;2; . . . ;8 and the
PWL gains in YAR9 were calculated using a least-squares
optimization. The optimization yielded

a¼ ½0 0:1879 0:2526 0:2805 0:3233 0:5586 0:6337 0:7373�;

YT
¼ ½2:8842 3:0618 7:6707 58:8349 �55:2754

�8:4142 15:7595 �16:4792 �3:7013�:

The resulting approximation ĥðvÞ is compared to the identified
mapping hðvÞ in the upper diagram of Fig. 3. In Fig. 4 the input and
output signals of the process and the model in the case of open-
loop simulation experiment are shown. To show the accuracy of
the described Wiener model also the relative modelling error is
presented in Fig. 5. The relative modelling error em is described by
the following equation:

emðtÞ ¼
ypðtÞ�yðtÞ

ypðtÞ
: ð43Þ

It is shown that the corresponding Wiener model gives accurate
model of pH process in a wide operating regime.

The proposed method was compared to the method described
in Biagiola et al. (2004). In this paper a robust H1 compensator for
controlling an SISO Wiener system was developed. The controller
also took the form of a Wiener model. The design approach
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consisted of an approximation of the nonlinear gain using a
piecewise linear (PWL) function and of using a linear controller
for each sector obtained from this approximation. Therefore, the
general controller structure can be stated as a linear dynamic
compensator in series with a PWL static gain.

The control-design parameters for the proposed method were
chosen as follows: nu ¼ 1, ny ¼ 4, T ¼ 0:3 min, Ar ¼�1=0:9, Br ¼ 1,
and Cr ¼ 1=0:9. The choice of ny and T is connected with the
desired model-prediction accuracy, as was discussed in Oblak and
Škrjanc (2006). The time constant of the reference model was
chosen such that the closed-loop response would be approxi-
mately as fast as in Biagiola et al. (2004).

A closed-loop experiment with a piecewise-constant reference
signal was conducted. The results, presented in Fig. 6, imply that
the process output successfully follows the reference in the whole
operating region in both cases. However, it is clear that in the case
of the proposed method the overall performance is better. The
overshoot is significantly lower in the CTWMPC case, and is not
dependent on the region of the process output. In terms of the
quadratic-integral cost function, we achieved a 30% decrease in

the tracking error. The corresponding input variables are shown in
Fig. 7. Note the impulse-like behavior of the CTWMPC control
signal in the time after the step reference changes—for practical
applications with slow actuators this can be avoided by using a
reference model with higher time constant.

To test the method in a more practical environment, a white
noise with a variance of 0.01, filtered through a first-order filter
with a time constant Tf ¼ 0:1 min, was added to the process
output. Figs. 8 and 9 present the results.

The disturbance rejection mode of the proposed algorithm was
tested by adding the unmeasured input disturbance as proposed
on Figs. 10 and 11. By the means of simulation it has been proven
that also the disturbance rejection properties of the proposed
control algorithm are suitable.

At the end the simulation experiment is given, where the value
of the control signal is constrained as follows: 0ruðtÞr1 and
�0:15=min�1rduðtÞ=dtr0:15 min�1. The simulation results are
given in Figs. 12 and 13.
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Fig. 6. Comparison of the closed-loop-experiment results for both methods.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

Time [min]

C
on

tro
l s

ig
na

l u

CTWMPC
PWL−H∞ optimal

Fig. 7. Control signals in the experiment.

0 20 40 60 80 100
3

4

5

6

7

8

9

10

11

Time [min]

R
ef

er
en

ce
 w

, p
ro

ce
ss

 o
ut

pu
t y

p

Reference
CTWMPC

Fig. 8. Comparison of the closed-loop-experiment results for both methods,

output noise added.

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time [min]

C
on

tro
l s

ig
na

l u

Fig. 9. Control signals in the experiment, output noise added.
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5. Conclusion

A method of nonlinear continuous-time model-predictive
control was presented. In the derivation procedure the method
inherently incorporates a PWL static nonlinear-mapping approx-
imation. The control law is in compact analytical form; further-
more, adaptation of the control parameters as a response to the
nonlinear behavior of the process is only a matter of scalar-product
computation. As a consequence, the computational burden is low
and the proposed method is suitable for real-time applications
where high-quality control is desired. Being based on a first-
principles model, the method is particularly suitable for nonlinear
chemical processes that can be described in the form of a Wiener-
type system. It was shown for the case of a pH-neutralization
process that our proposed method exhibits a level of quality
control that outperforms the robust nonlinear H1 method.
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